Certain sufficient conditions for phi-like functions in a parabolic region

نویسندگان

چکیده

To obtain the main result of present paper we use technique differential subordination. As special cases our result, sufficient conditions for $f\in\mathcal A$ to be $\phi-$like, starlike and close-to-convex in a parabolic region.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CERTAIN SUFFICIENT CONDITIONS FOR CLOSE-TO-CONVEXITY OF ANALYTIC FUNCTIONS

The object of this paper to derive certain sucient condi-tions for close-to-convexity of certain analytic functions dened on theunit disk  

متن کامل

certain sufficient conditions for close-to-convexity of analytic functions

the object of this paper to derive certain sucient condi-tions for close-to-convexity of certain analytic functions dened on theunit disk

متن کامل

Sufficient Conditions for Certain Types of Functions to Be Parabolic Starlike

In this paper sufficient conditions are determined for functions of the form f(z) = z 1 + ∞ ∑ 1 bkz k , f(z) = z (1 + zn)k and certain other types of functions to be parabolic

متن کامل

Sufficient Conditions for Starlikeness Associated with Parabolic Region

An analytic function f(z)= z+an+1zn+1+··· , defined on the unit disk = {z : |z|< 1}, is in the class Sp if zf ′(z)/f(z) is in the parabolic region Rew > |w −1|. This class is closely related to the class of uniformly convex functions. Sufficient conditions for function to be in Sp are obtained. In particular, we find condition on λ such that the function f(z), satisfying (1−α)(f(z)/z)μ+αf ′(z)(...

متن کامل

On Certain Sufficient Conditions for Starlikeness

We consider certain properties of f(z)f ′′(z)/f ′2(z) as a sufficient condition for starlikeness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Universitatis Babe?-Bolyai

سال: 2023

ISSN: ['1224-8754', '2065-9458']

DOI: https://doi.org/10.24193/subbmath.2023.2.05